Boucles d'induction magnétique - BIM pour les malentendants

MISE EN GARDE ET BASES INDISPENSABLES

Une BIM qu'est-ce que c'est?

• Une Boucle d'Induction Magnétique est un système qui permet de communiquer avec les personnes malentendantes appareillées en leur adressant un message audio de haute qualité totalement affranchi des bruits ambiants.

Préambule

- Aujourd'hui, aux dires des associations de malentendants,
 80 % des boucles installées ne donnent par satisfaction.
- Pourquoi ?
- Alors que les résultats doivent être conformes à la norme NF-EN60118-4

Pourquoi tant de BIM inutiles?

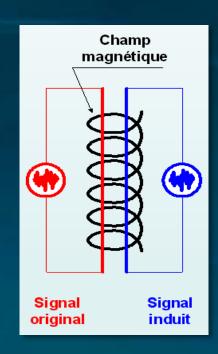
- Le domaine des boucles d'induction magnétique est resté longtemps un bricolage confidentiel.
- Les textes sur l'accessibilité ont changé la donne car le marché considérable qui s'est ouvert n'a pas échappé à certains.
- Un survol rapide laissant croire qu'il suffit d'entourer une pièce avec un fil la boucle beaucoup d'opportunistes se sont dit : « je sais faire çà ».
- De la à s'autoproclamer « spécialiste en boucles d'induction », il n'y avait qu'un pas que beaucoup ont franchi, avec les résultats que l'on constate.

La réalité des boucles

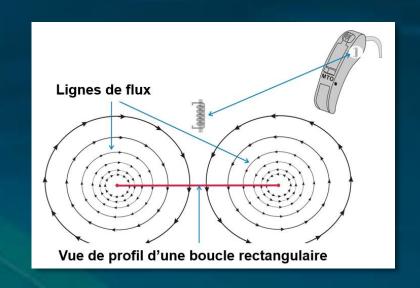
- Si le principe des BIM est très simple, il s'agit malgré tout d'un domaine technique à part entière.
- Le mode de fonctionnement des boucles qui relève exclusivement du magnétisme impose des contraintes inhabituelles et des solutions adaptées à chaque cas.

Comment fonctionne une BIM?

- Plutôt que de propager le son dans l'air, comme on le fait avec la parole ou avec un haut-parleur, le son est transmis par induction, via un champ magnétique.
- Ce principe n'induit aucune distorsion.



Principe de l'induction magnétique


- Quand un courant parcourt un conducteur électrique, il se crée un champ magnétique autour de celui-ci.
- Si un autre conducteur baigne dans ce champ magnétique, il apparaît à ses bornes un signal électrique identique au premier.
- On parle alors de signal « induit », d'où le terme d'induction. Ce principe est notamment utilisé dans les transformateurs.

En pratique...

- Au lieu d'envoyer le signal audio dans un hautparleur, on l'envoie dans un fil conducteur qui doit être judicieusement installé: la boucle d'induction.
- Ce signal génère un champ magnétique qui tourne autour du fil de la boucle.
- Ce champ magnétique est le vecteur du signal audio qui est reçu par une bobine placée dans l'aide auditive de la personne malentendante..

Avantages d'une BIM

- Son de haute qualité affranchi des bruits ambiants.
- Pas de restriction de mouvements dans la surface couverte par la boucle.
- Pas de discrimination.
- Pas de gestion matériel.
- Grande fiabilité.

Quels lieux peuvent être équipés?

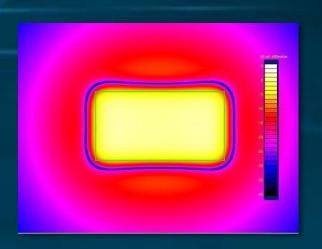
- Tous les lieux intérieurs ou extérieurs, fixes ou mobiles peuvent théoriquement être équipés.
- Il n'y a pas d'autres limites que :
 - Les possibilités d'installation
 - Certaines exigences de confidentialité
 - L'existence d'une pollution magnétique locale rédhibitoire directement captée par les aides auditives

Quelles sont les contraintes inhabituelles liées aux BIM ?

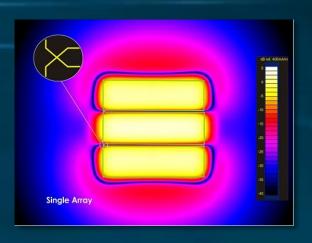
- Elles découlent du principe de fonctionnement :
 - Dimensions et formes des zones à couvrir
 - Présence de métal perturbateur (visible ou non)
 - Risques d'interférences avec d'autres boucles
 - Besoins de confidentialité
 - Possibilités d'installation
 - Pollution magnétique locale

Les solutions

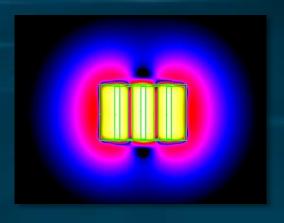
- Il n'y a pas de système passe-partout!
- Selon les cas rencontrés différents systèmes de BIM devront être utilisés, seuls ou conjointement :
 - Kits guichet
 - Boucles simples périmétriques
 - Boucles en "8" à deux ou plusieurs spires
 - Systèmes phasés en épingles à faible ou à ultra faible débordement
 - Systèmes pour structures métalliques
 - Boucles spéciales
 - Boucles avec ou sans spire d'annulation

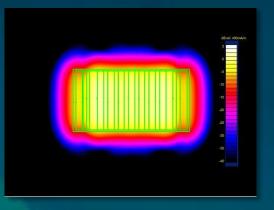


BOUCLES SIMPLES PERIMETRIQUES


- Débordent très largement dans les trois dimensions
- Inutilisables dans des pièces trop proches
- Très sensibles aux perturbations métalliques
- Inutilisables dans des pièces trop grandes ou de formes trop irrégulières
- Doivent être installées à une hauteur convenable en fonction de leur largeur.

BOUCLES EN "8" à deux ou plusieurs spires

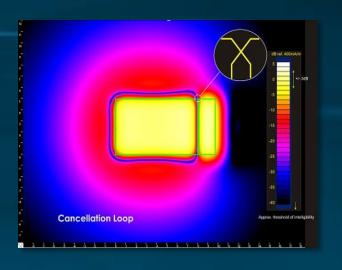

- Compensent les effets du métal
- Débordent dans les trois dimensions
- Inutilisables dans des pièces trop proches
- Inutilisables dans certaines pièces de formes trop irrégulières
- Installées au sol, parfois en hauteur
- Zone d'annulation ponctuelle au croisement des fils



SYSTEMES PHASES EN EPINGLES

- Compensent parfaitement les effets du métal et peuvent équiper des structures entièrement métalliques : gradins, barges, Tour Eiffel, etc.
- Peuvent couvrir des zones de toutes dimensions et de toutes formes, avec ou sans trémies
- Installées au sol, très exceptionnellement en hauteur
- Peuvent être à faible débordement (une largeur de boucle) ou à ultra faible débordement (1,5 m autour de la boucle)

SPIRES D'ANNULATION (1/2)


- Il est des cas ou le débordement n'est gênant que sur un côté de la boucle.
- Il est alors possible d'insérer une spire d'annulation de façon à circonscrire rigoureusement le débordement de ce côté.
- Par exemple, pour éviter des interférences avec les microphones dynamiques ou les capteurs électromagnétiques des guitares électriques placés sur une scène.

SPIRES D'ANNULATION (2/2)

- Une spire d'annulation permet de circonscrire le débordement horizontal sur un côté de la boucle.
- Presque toutes les boucles peuvent recevoir une spire d'annulation.
- Il peut exister une zone ponctuelle d'annulation au croisement des fils..

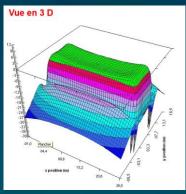
Calcul des besoins électriques

- Une fois un système de boucle déterminé en fonction des contraintes locales, il faut :
 - Apprécier précisément les pertes métalliques et calculer l'ampérage nécessaire pour obtenir un champ magnétique de valeur convenable (niveau sonore).
 - Calculer le voltage nécessaire pour obtenir une large bande passante et une bonne qualité audio.

Quel amplificateur?

- IMPORTANT : Il est impossible de choisir un amplificateur sur la seule base de la surface à couvrir!
- Pour une même surface, selon les rapports de dimensions de la zone à couvrir et selon l'influence du métal présent dans l'environnement, des écarts de dimensionnement de 1 à 8, voire plus, sont couramment observés.

Choix de l'amplificateur


- On ne parle pas de puissance et on oublie les Watts par m²!
- L'amplificateur doit pouvoir fournir l'ampérage et le voltage nécessaires sur la charge présentée par la boucle, entre sa faible résistance et son impédance à la fréquence critique.
- C'est seulement à ce stade qu'il peut être nécessaire de jouer sur la section du fil de la boucle pour optimiser l'adéquation entre les caractéristiques de la boucle et celles de l'amplificateur.

En synthèse

- La caractérisation d'un système de boucle demande que soient pris en compte des facteurs inhabituels.
- Si la détermination de boucles simples est relativement aisée, en revanche celle des systèmes plus évolués, souvent indispensables, exige la maîtrise de logiciels de simulation "propriétaires" sophistiqués et une grande expérience.
- Les installateurs, voire-même certains distributeurs, ne disposent pas de ces moyens essentiels...

BIM Concept France

distributeur historique pour la France d'AMPETRONIC,

leader mondial des boucles d'induction magnétique pour les malentendants et son bureau d'études

Electroacoustique Consultant - EaC

sont à votre disposition pour

Etudes, Conseils, Cotations, Contrôles de conformité

Vente d'amplificateurs, d'accessoires et de matériels de mesures

Définition de cahiers des charges

contact@bimconceptfrance.fr - www.bimconceptfrance.fr

eac@eac84.com - www.eac84.com

